Mixing properties for nonautonomous linear dynamics and invariant sets
نویسندگان
چکیده
منابع مشابه
Mixing properties for nonautonomous linear dynamics and invariant sets
We study mixing properties (topological mixing and weak mixing of arbitrary order) for nonautonomous linear dynamical systems that are induced by the corresponding dynamics on certain invariant sets. The type of nonautonomous systems considered here can be defined by a sequence (Ti)i∈N of linear operators Ti : X → X on a topological vector space X such that there is an invariant set Y for which...
متن کاملOn invariant sets topology
In this paper, we introduce and study a new topology related to a self mapping on a nonempty set.Let X be a nonempty set and let f be a self mapping on X. Then the set of all invariant subsets ofX related to f, i.e. f := fA X : f(A) Ag P(X) is a topology on X. Among other things,we nd the smallest open sets contains a point x 2 X. Moreover, we find the relations between fand To f . For insta...
متن کاملTesting Linear-Invariant Non-Linear Properties
We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for “triangle freeness”: a function f : {0, 1}n → {0, 1} satisfies ...
متن کاملCoherent sets for nonautonomous dynamical systems
We describe a mathematical formalism and numerical algorithms for identifying and tracking slowly mixing objects in nonautonomous dynamical systems. In the autonomous setting, such objects are variously known as almost-invariant sets, metastable sets, persistent patterns, or strange eigenmodes, and have proved to be important in a variety of applications. In this current work, we explain how to...
متن کاملComputation of nonautonomous invariant and inertial manifolds
We derive a numerical scheme to compute invariant manifolds for timevariant discrete dynamical systems, i.e., nonautonomous difference equations. Our universally applicable method is based on a truncated Lyapunov-Perron operator and computes invariant manifolds using a system of nonlinear algebraic equations which can be solved both locally using (nonsmooth) inexact Newton, and globally using c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2013
ISSN: 0893-9659
DOI: 10.1016/j.aml.2012.08.014